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Abstract
The problem of analytical integrability of the three-level problem by
reduction of the time-dependent Schrödinger equations to the third-order linear
differential equation satisfied by the generalized hypergeometric functions 3F2

is considered. A total of 12 infinite classes of models solvable in terms of these
functions is found, most of which are new and others are generalizations of the
previously known families.

PACS numbers: 02.30.Gp, 02.30.Hq

1. Introduction

Analytic solutions of the time-dependent Schrödinger equations for three-state quantum
systems are extensively applied in the investigation of many physical problems in the theory
of interaction of radiation with matter during the past decade. With the help of these solutions,
a number of term crossing and pulse-shape effects, population transfer problems, diffraction
and interference effects, and other aspects of non-adiabatic transitions in quantum systems
were investigated (see, e.g., [1–7]). For this reason a considerable amount of research has
been devoted to the exact solutions of the Schrödinger equations in terms of special functions
[8–10]. The general method used for finding new integrable cases is the reduction of the
Schrödinger equations to a standard differential equation with known solutions. A starting
point for the present study is the observation that most non-trivial solutions to the three-level
problem are expressed in terms of generalized hypergeometric functions. Since the three-level
problem can be formulated in the form of a third-order ordinary differential equation, more
attention should be thus paid to the solutions which are expressed in terms of hypergeometric
functions 1F2, 2F2 and 3F2 (only these hypergeometric functions obey third-order equations,
see [11]). We herein concentrate on the solutions which may be expressed in terms of function
3F2. There exist several classes of three-state models for which the Clausen function is used
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to construct the solution (see, e.g., [1, 2, 5, 6, 9, 10]). We generalize all the presently known
solutions in terms of the Clausen function and derive a number of new classes of solvable
models. Altogether we list here 12 infinite classes of integrable cases of the three-level
problem. We hope that the presented solutions will be useful in studying different problems
of quantum optics and atomic physics.

2. The integrable classes

In the rotating wave approximation, the time-dependent Schrödinger equations written for
the population amplitudes a1,2,3 of a three-level quantum system interacting with two quasi-
resonant classical electromagnetic waves read

ia1t = U e−iδ1a2 ia2t = U e+iδ1a1 + V e−iδ2a3 ia3t = V e+iδ2a2 (1)

where U(t) and V (t) are the Rabi frequencies and δ1,2(t) present the detuning modulation
functions. By eliminating a2 and a3 from this system, one may write the problem in the form
of a third-order ordinary differential equation for the first-level amplitude a1:

a1t t t +

(
2iδ1t − 2

Ut

U
+ iδ2t − Vt

V

)
a1t t +

[(
iδ1t − Ut

U

)
t

+ U 2 + V 2 +

(
iδ1t − Ut

U

)

×
(

iδ1t − Ut

U
+ iδ2t − Vt

V

)]
a1t + U 2

(
iδ1t +

Ut

U
+ iδ2t − Vt

V

)
a1 = 0. (2)

Now, our aim is to find real functions U(t), V (t) > 0 and δ1,2(t), for which the transformation
of the dependent and independent variables

u = ϕ(z)a1(z) z = z(t) (3)

reduces equation (2) to the equation satisfied by the Clausen function

uzzz +
f1z + f0

z(1 − z)
uzz +

g1z + g0

z2(1 − z)
uz +

h1z + h0

z3(1 − z)
u = 0. (4)

As is known, the general solution of this equation is given in terms of five-parameter
generalized hypergeometric functions 3F2 [11]

u =
3∑

m=1

Cmzηm
3F2

(
ηm − ξ1, ηm − ξ2, ηm − ξ3; 1 + ηm − ηm1 , 1 + ηm − ηm2; z

)
(5)

where C1,2,3 are arbitrary constants, the parameters η1, η2, η3 and ξ1, ξ2, ξ3 are determined
from the following cubic characteristic equations

η(η − 1)(η − 2) + f0η(η − 1) + g0η + h0 = 0 (6)

ξ(ξ − 1)(ξ − 2) − f1ξ(ξ − 1) − g1ξ − h1 = 0 (7)

and
(
ηm1 , ηm2

)
is the complementary to ηm pair from the triad (η1, η2, η3).

According to the general approach based on the class property of the solvable cases
[10], one should rewrite equation (2) substituting throughout variable t by z and equate the
coefficients of the obtained equation and equation (4), the latter being previously transformed
through the transformation of the independent variable (3 ). Further, if functions U ∗(z), V ∗(t)
and δ∗

1,2(z) (which are referred to as basic models) are the solutions of the obtained system of
equations then functions U(t), V (t) and δ1,2(t) defined by the relations

U(t) = U ∗(z)
dz

dt
V (t) = V ∗(z)

dz

dt

dδ1,2(t)

dt
= δ∗

1,2z(z)
dz

dt
(8)
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form a class of functions for which the solution of the initial three-level problem is expressed in
terms of generalized hypergeometric functions by formula (5). Here z = z(t) is any physically
reasonable complex-valued function of real variable t (time) performing one-to-one mapping
t ←→ z.

Following the previous work [10], we search for the basic solutions of the form

U ∗ = U ∗
0 zk1(1 − z)n1 V ∗ = V ∗

0 zk2(1 − z)n2 δ∗
1,2z = β1,2

z
+

γ1,2

1 − z
(9)

where the parameters k1,2 and n1,2 are integers or half-integers.
If we confine ourselves to the simplest case ϕ(z) ≡ 1, then the outlined procedure will

lead us to the following equations:

2iβ1 + iβ2 − 2k1 − k2

z
+

2iγ1 + iγ2 + 2n1 + n2

1 − z
= f0 + f1z

z(1 − z)
(10)

(
− iβ1 − k1

z2
+

iγ1 + n1

(1 − z)2

)
+ U ∗2

0 z2k1(1 − z)2n1 + V ∗2
0 z2k2(1 − z)2n2 +

(
iβ1 − k1

z
+

iγ1 + n1

1 − z

)

×
(

iβ1 + iβ2 − k1 − k2

z
+

iγ1 + iγ2 + n1 + n2

1 − z

)
= g0 + g1z

z2(1 − z)
(11)

U ∗2
0 z2k1(1 − z)2n1

(
iβ1 + iβ2 + k1 − k2

z
+

iγ1 + iγ2 − n1 + n2

1 − z

)
= h0 + h1z

z3(1 − z)
. (12)

From the first equation of this system we have

f0 = 2iβ1 + iβ2 − 2k1 − k2 (13)

f1 + f0 = 2iγ1 + iγ2 + 2n1 + n2. (14)

The other two equations give

g0 = (iβ1 − k1)(iβ1 + iβ2 − k1 − k2 − 1) + [(U ∗2 + V ∗2)z2]z=0 (15)

g1 + g0 = (iβ1 − k1)(iγ1 + iγ2 + n1 + n2) + (iγ1 + n1)(iβ1 + iβ2 − k1 − k2)

+ [(U ∗2 + V ∗2)(1 − z)]z=1 (16)

and

h0 = (U ∗2z2)z=0(iβ1 + iβ2 + k1 − k2) (17)

h1 + h0 = (U ∗2)z=1(iγ1 + iγ2 − n1 + n2) + [U ∗2(1 − z)]z=1(iβ1 + iβ2 + k1 − k2). (18)

Besides, the structure of equations (15)–(18) suggests imposing several additional restrictions
on the involved parameters. First, one can easily show that should be k1,2, n1,2 � −1 and
k1,2 + n1,2 < 0. Further, it is deduced that n1 �= −1 and k1 �= 0. Finally, it is necessary to
eliminate the term proportional to 1/(1 − z)2 in the second equation of (11). This leads to the
following relations

[(U ∗2 + V ∗2)(1 − z)2]z=1 + (iγ1 + n1)(iγ1 + iγ2 + n1 + n2 + 1) = 0 (19)

U ∗2 + V ∗2 = A

z2
+

B

z(1 − z)
+

C

(1 − z)2
(20)
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Table 1. Twelve basic models integrable in terms of the Clausen function.

N k1 n1 k2 n2 U∗ V ∗ δ∗
1z, δ

∗
2z Restriction

1 −1 −1/2 −1 −1/2
U∗

0
z
√

1−z

V ∗
0

z
√

1−z

β1,2
z

± γ1
1−z

γ1 + γ2 = 0

2 −1 −1/2 −1/2 −1/2
U∗

0
z
√

1−z

V ∗
0√

z(1−z)

β1,2
z

± γ1
1−z

γ1 + γ2 = 0

3 −1 0 −1 −1
U∗

0
z

√
γ1(γ1+γ2)
z(1−z)

β1,2
z

+ γ1,2
1−z

V ∗2
0 = γ1(γ1 + γ2)

4 −1 0 −1/2 −1
U∗

0
z

√
γ1(γ1+γ2)√

z(1−z)

β1,2
z

+ γ1,2
1−z

V ∗2
0 = γ1(γ1 + γ2)

5 −1 0 0 −1
U∗

0
z

√
γ1(γ1+γ2)

1−z

β1,2
z

+ γ1,2
1−z

V ∗2
0 = γ1(γ1 + γ2)

6 −1 0 −1 −1/2
U∗

0
z

V ∗
0

z
√

1−z

β1
z

,
β2
z

+ γ2
1−z

γ1 = 0

7 −1 0 −1 0
U∗

0
z

V ∗
0
z

β1
z

,
β2
z

+ γ2
1−z

γ1 = 0

8 −1 0 −1/2 −1/2
U∗

0
z

V ∗
0√

z(1−z)

β1
z

,
β2
z

+ γ2
1−z

γ1 = 0

9 −1/2 −1/2 −1 −1/2
U∗

0√
z(1−z)

V ∗
0

z
√

1−z

β1,2
z

± γ1
1−z

γ1 + γ2 = 0

10 −1/2 −1/2 −1/2 −1/2
U∗

0√
z(1−z)

V ∗
0√

z(1−z)

β1,2
z

± γ1
1−z

γ1 + γ2 = 0

11 −1/2 0 0 −1/2
U∗

0√
z

U∗
0√

1−z

β1
z

,
β2
z

+ β1+β2
1−z

V ∗
0 = U∗

0 , γ1 = 0, γ2 = β1 + β2

12 −1/2 0 −1 +1/2
U∗

0√
z

U∗
0

√
1−z

z
β1
z

,
β2
z

+ β1+β2
1−z

V ∗
0 = U∗

0 , γ1 = 0, γ2 = β1 + β2

where A,B and C are arbitrary constants. The examination of all the possible alternatives,
taking into account the mentioned restrictions, leads us, finally, to 12 independent basic
solutions. These functions, together with the necessary restrictions imposed on the involved
parameters, are presented in table 1. To get a notion of the typical representatives of
corresponding classes, one may apply a standard transformation z = [1 + tanh(t)]/2.

The listed classes include all the presently known three-level models integrable in terms of
generalized hypergeometric functions 3F2. The tenth class, a class involving pulses of the same
shape, is the class considered in detail by Carroll and Hioe [2]. The sixth and ninth classes are
generalizations to weaker restrictions of two families introduced in [10]. The eleventh class
was recently presented by us in [6]. Other classes are derived for the first time. As is seen
from the table, these families present different symmetric and asymmetric pulse-shapes and
detuning modulation functions that could be useful for investigation of pulse-shape and level
crossing effects simultaneously. For instance, the fifth class presenting pulse shapes analogous
to that considered by Laine–Stenholm [7] additionally describes delayed level crossings.

3. Summary

Thus, we have carried out a search for the cases of the three-level problem for which the
solutions are written in terms of Clausen’s generalized hypergeometric functions 3F2. We
have previously presented a ten-parametric class of models permitting general solution of
the Schrödinger equations in the form of convergent power series [10]. Here we specify 12
infinite subclasses of that general class which are integrable in terms of the Clausen function.
Some of these classes are generalizations of previously known families, while the rest of them
are new. The obtained models may be applied for investigation of specific physical problems
of quantum and atomic optics. For instance, the fifth class may be employed for study of
multiple term-crossings (between different pairs of the levels) in three-state systems. Finally,
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we would like to note that the above analysis can be easily applied to other equations, e.g., to
those that are obeyed by generalized hypergeometric functions 1F2 and 2F2.
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